Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 327


 
 Table of Contents 
ARTICLE
Year : 2011  |  Volume : 34  |  Issue : 3  |  Page : 190-192  

Analysis of triple-labeled samples by multivariate liquid scintillation counting


Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Date of Web Publication27-Sep-2012

Correspondence Address:
P J Reddy
Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0464.101717

Rights and Permissions
  Abstract 

The radioassay of samples containing three pure beta emitters having various activity ratios has been performed by using the most probable value theory applied to liquid scintillation detection. The principle of the technique is based on experimentally generating simultaneous equations more than the radionuclides to be analyzed. This technique requires a liquid scintillation counter and sets of quenched radionuclide standards. The present technique has been applied successfully to the case of 3 H- 35 S- 36 Cl in composite mixtures.

Keywords: CIEMAT/NIST, composite mixture, liquid scintillation counting, most probable value theory, transformed spectral index of external standard


How to cite this article:
Reddy P J, Bhade S, Babu D, Sharma D N. Analysis of triple-labeled samples by multivariate liquid scintillation counting. Radiat Prot Environ 2011;34:190-2

How to cite this URL:
Reddy P J, Bhade S, Babu D, Sharma D N. Analysis of triple-labeled samples by multivariate liquid scintillation counting. Radiat Prot Environ [serial online] 2011 [cited 2019 Sep 21];34:190-2. Available from: http://www.rpe.org.in/text.asp?2011/34/3/190/101717


  1. Introduction Top


Conventionally, liquid scintillation counting (LSC) is used for the activity estimation of single and dual radionuclides. However, in present LSC systems, it is possible to analyze multilabeled radionuclides. Several methods are available for the radioassay of multilabeled nuclides, [1] in the sample using LSC. However, in the present study, the most probable value theory was applied for activity estimation in a sample containing triple-labeled beta-emitting radionuclides. The fundamental principle of this technique is based on the construction of a number of simultaneous equations that exceeds the number of radionuclides. This technique can also be applied for more than three combinations of radionuclides. This technique eliminates the time-consuming chemical separation and needs only a set of quench standards for each radionuclide. Composite samples containing 3 H (E max. 18.6keV), 35 S (E max. 167keV), and 36 Cl (E max. 714keV) were successfully analyzed using this method.


  2. Materials and Methods Top


Aqueous standard solutions of 3 H from Packard (primary standard) and 35 S and 36 Cl from the Board of Radiation Isotopes and Technology (BRIT) were used. Using nitromethane as a chemical quencher, quench standards of 3 H, 35 S, and 36 Cl were prepared gravimetrically by adding the required amount into polyethylene vials containing 10 mL of Optiphase HiSafe III scintillator. Measurements were carried out using the Packard TriCarb Model 2900TR Liquid Scintillation Counter. The quench-indicating parameter tSIE (transformed spectral index of external standard) was obtained from 133 Ba in-built gamma source. The composite samples ( 3 H, 35 S, and 36 Cl) were counted in three counting regions, namely, 0-2 keV, 2-4 keV, 4-6 keV, 6-8keV, 8-20 keV, 20-100 keV, 100-200 keV, and 200-400 keV. The counting times were decided to get a total of 10,000 counts in each of the above-mentioned regions for each quenched standard to keep the error minimum.

2.1 Standardization of 35 S and 36 Cl by CIEMAT/NIST method

35 S and 36 Cl standards were prepared by adding the solutions into 20 mL polyethylene vials gravimetrically, each containing 10 mL Optiphase HiSafe III scintillator. The CIEMAT/NIST method developed by Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT) and the National Institute of Standards and Technology (NIST) was used for the standardization of radionuclides with liquid scintillation analyzer. Visual Basic CN2004 program [2] was used to determine algorithmically the counting efficiency of the radionuclide to be assayed using tritium as a tracer. In this method, the quench-indicating parameter, tSIE and figure of merit (FOM) were used to construct the universal curve [Figure 1]a which is basically independent of the radionuclide. [Figure 1]b depict the relationship between FOM and the theoretical efficiency for 35 S and 36 Cl, respectively. The counting efficiencies for 35 S and 36 Cl using the universal curve and the relationship between FOM and theoretical efficiency were 91 and 99.4% for tSIE values 460.18 and 531.63, respectively. These were used to determine the absolute disintegration rates of 35 S and 36 Cl individually. The method has been described in detail in the earlier studies. [3],[4],[5]
Figure 1: (a) Universal curve of FOM Vs tSIE using 3H standard using CIEMAT/NIST standardization technique (b) FOM Vs theoretical efficiencies for 35S and 36Cl

Click here to view


2.2 Experimental procedure for the most probable value theory

To resolve 3 H (E max =18.6keV), 35 S (E max =167keV), and 36 Cl (E max =714keV) activities in a composite mixture, three counting regions 0-2 keV, 2-4 keV, 4-6 keV, 6-8 keV, 8-20 keV, 20-100 keV, 100-200 keV, and 200-400 keV were selected. These counting regions were selected on the basis of a higher efficiency of each radionuclide in the mentioned regions as well as with maximum contribution of lowest energy radionuclide ( 3 H) in the maximum counting regions.

Tritium standards were prepared by adding 0.01mL of 3 H into polyethylene vials containing 10 mL of Optiphase HiSafe III scintillator gravimetrically. In the same way, 36 Cl standards of 0.01 mL were prepared by dispensing the same volume of scintillator. In all cases, adequate amounts of nitro methane (0.01-0.05mL) were added to obtain increasing quench.

All the quench standards were counted in the counting regions as defined earlier. Quench-correction curves were prepared in these regions to obtain the efficiencies corresponding to the tSIE value [Figure 2]a- c. Composite samples with varying activity ratios 1/1/1/ to 1/1/10 were prepared to evaluate the performance of the multivariate technique. The count rate of composite samples in the above three counting regions are defined by the following normal equations:
Figure 2: (a) Calibration curves fro H-3 in different counting regions (b) Calibration curves fro S-35 in different counting regions (c) Calibration curves fro Cl-36 in different counting regions

Click here to view




Where N 1, N 2, N 3 are the count rates of a sample in respective counting regions, A,B,C are the activities of 3 H, 35 S, and 36 Cl, respectively and a 1, a2 , a 3 are respective efficiencies in the counting regions. From the series of above equations and following the derivations as given by Matsui and Takiue, [6] the activities of 3 H, 35 S, and 36 Cl were obtained. The individual activities thus obtained were then compared with the absolute activities obtained by the CIEMAT/NIST standardization method [Table 1].
Table 1: Activity obtained for 3H, 35S, and 36Cl from multivariate method and the percentage deviations as compared to the CIEMAT/NIST standardization technique

Click here to view



  3. Results Top


The activities of triple-labeled radionuclides in a mixture for various activity ratios 1/1/1 to 10/1/1, 1/10/1, and 1/1/10 clearly indicate that the measured values are in good agreement with the percentage deviation within ±9.3% compared with the activity obtained by the CIEMAT/NIST standardization method which is acceptable in all radiation-protection measurements.


  4. Conclusion Top


Simultaneous determination of activities using LSC in multilabeled samples provides easy sample preparation as compared to the time-consuming conventional chemical separation method. The approach used in this present study can also be used for more than three combinations of radionuclides.

 
  References Top

1.Noor A, Zakir M, Rasyid B, Maming, L'Annunziata MF. 1996. Cerenkov and Liquid Scintillation Analysis of the Triple Label 86 Rb- 35 S and 33 P. Appl Radiat Isot 1996;47:659-68.  Back to cited text no. 1
    
2.Günther E. What can we expect from the CIEMAT/NIST method? Appl Radiat Isot 2002;56:357-60.  Back to cited text no. 2
    
3.Kulkarni DB, Reddy PJ, Bhade SPD, Narayan KK, Narayanan A, Krishnamachari G, et al. 2006. Comparision of efficiency tracing and zero detection threshold techniques with CIEMAT/NIST standardization method under different quench conditions with Liquid Scintillation Spectrometer. Current Science,90;83-7.   Back to cited text no. 3
    
4.Malonda AG, Garcia-Torano. Evaluation of counting efficiency in liquid scintillation counting of pure beta ray emitters. Appl Radiat Isot 1982;33:249-53E.  Back to cited text no. 4
    
5.Reddy PJ, Kulkarni DB, Bhade SPD, Narayan KK, Narayanan A, Krishnamachari G, et al. Activity determination of Beta emitting Radionuclides by different methods using Liquid Scintillation Spectrometry. Nucl Radiochem Symp 2005;681-2.  Back to cited text no. 5
    
6.Matsui, Takiue M. Liquid Scintillation Radioassay of Multi-labeled Beta-emitters. Int J Radiat Isot 1991;42:841-5.  Back to cited text no. 6
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
1. Introduction
2. Materials and...
3. Results
4. Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1405    
    Printed60    
    Emailed0    
    PDF Downloaded162    
    Comments [Add]    

Recommend this journal