Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 50
ORIGINAL ARTICLE
Year : 2017  |  Volume : 40  |  Issue : 2  |  Page : 60-68

Environmental impact assessment due to natural radioactivity in the mountain rocks of the Red Sea coast, Egypt


1 Department of Radiation Physics, National Center of Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt; Department of Physics, Faculty of Science, Al Baha University, Al Bahah, Saudi Arabia
2 Department of Physics, Faculty of Science, Al Baha University, Al Bahah, Saudi Arabia
3 Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia

Correspondence Address:
Soad Saad Fares
Department of Radiation Physics, National Center of Radiation Research and Technology, Atomic Energy Authority, Cairo

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/rpe.RPE_6_17

Rights and Permissions

The mountains' composition, especially the granitic mountains, contains a certain amount of natural radioactivity due to the decay of uranium, thorium, and potassium isotopes. As a part of the impact assessment study, thirty rock samples were collected from natural mountains in the Red Sea coast, Egypt, considered as the most popular ones, and were measured for their natural radioactivity to assess the radiological impact when they are used as building materials. Rock samples were examined by high-resolution γ-spectrometry. The average activity concentration of 238U, 226Ra, 232Th, and 40K were 192 ± 24, 178 ± 27, 66 ± 7 and 193 ± 23, and 287 ± 31 Bq/kg, respectively. The annual effective dose rate (mSv/y), the mean of the absorbed dose rates (D), radium equivalent (Raeq), the external hazard index (Hex) and the internal hazard index (Hin) and the representative level index (Iγr, Iαr) were; 0.25 mSv/y, 205.64 nGy/h, 286.9 Bq/kg, 0.81, 1.33, 1.97 and 0.89, respectively. The specific activity ratios of 226Ra/238U and 232Th/238U were evaluated to analyze the behavior of these radionuclides.


[FULL TEXT] [PDF]*
Print this article     Email this article
Next article
Previous article
Table of Contents
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed77    
    Printed2    
    Emailed0    
    PDF Downloaded39    
    Comments [Add]    

Recommend this journal