Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 180


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 37  |  Issue : 2  |  Page : 63-67  

An attempt to correlate shift in thermoluminescence peak with heating rate and black body radiation


Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Date of Web Publication18-Dec-2014

Correspondence Address:
N S Rawat
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0464.147273

Rights and Permissions
  Abstract 

Shift in the maxima of a thermoluminescence (TL) glow peak, with an increase in heating rate, is a well-known and readily observed phenomena with its mathematical treatment/formalism in the paper from Randal and Wilkins in 1945. The occurrence of TL glow peak is observed at high temperature and earlier in time domain with increase in heating rate. The explanation of this phenomenon is not obvious at first instance and hasn't been addressed satisfactorily in the literature. The shift in TL peak with the heating rate has been ignored as far as its physical interpretation is concerned. This communication suggests an approach to explaining this observation, and an attempt has been made to associate a physical significance to it using the concept that evolves from black-body radiation, a well-known and thoroughly explored quantum phenomenon in modern physics.

Keywords: Black-body radiation, Stefan-Boltzmann law, thermoluminescence


How to cite this article:
Rawat N S, Kulkarni M S, Mishra D R, Bhatt B C, Babu D. An attempt to correlate shift in thermoluminescence peak with heating rate and black body radiation. Radiat Prot Environ 2014;37:63-7

How to cite this URL:
Rawat N S, Kulkarni M S, Mishra D R, Bhatt B C, Babu D. An attempt to correlate shift in thermoluminescence peak with heating rate and black body radiation. Radiat Prot Environ [serial online] 2014 [cited 2022 Jan 19];37:63-7. Available from: https://www.rpe.org.in/text.asp?2014/37/2/63/147273


  Introduction Top


Thermoluminescence (TL) is a luminescence phenomenon exhibited by insulator or semiconductor materials and is observed when irradiated solid is thermally stimulated. TL should not be confused with the light spontaneously emitted from a substance when it is heated to incandescence. At higher temperatures (say in excess of 200°C) a solid emits (infra) red radiation of which the intensity increases with increasing temperature. This is thermal or black-body radiation (BBR). TL, however, is the thermally stimulated emission of light following the previous absorption of energy from radiation.

Shift in the maxima of a TL glow curve with the heating rate is well known and readily observed phenomena since the model of TL has evolved and proposed by Randall and Wilkins in 1945. [1],[2] The TL glow peak shifts toward high temperature but occurs earlier in the time domain, with an increase in heating rate. The explanation of this phenomenon is not obvious at first instance.

Shift in TL peak with the heating rate has empirical explanation as proposed by Kitis. [3] The shift of Tmax versus heating rate is empirically very easily understood. At a low heating rate β1 , the time spent by the phosphor at a temperature T1 , is long enough, so that the amount of the thermal release of electrons depending on the half-life at this temperature could take place. As the heating rate increases to β2 > β1 the time spent at the same temperature T1 decreases and therefore the thermal release of electrons is also decreased. Hence, a higher temperature T2, is needed for the same amount of the thermal release to take place at β2 . In this way, the whole glow-peak is shifted to higher temperatures as the heating rate increases in a manner depending on the half-life and the time spent at each temperature.

In this communication we suggest another approach to explaining the same and associate a physical significance to this effect, using the concept that evolves from BBR - a well-known and thoroughly explored quantum phenomenon in modern physics. The concept of BBR is coupled with the heating rate to explain the shift in TL peak (T m ). The suggested theory deals quantitatively as well as qualitatively with the observed shift in TL peak. However, it overestimates the shift in TL peak toward higher temperatures and lower time with an increase in heating rate. However, still it throws some light and deals well with the observed phenomenon.

Since the method of TL dosimetry is widely used in various fields such as personnel, environmental, medical, retrospective accident dosimetry as well as TL dating, better understanding of effect of heating rate on T m may be helpful in interpretation and resolving of cases of accident exposures in various situations.

Here, an important point that authors would exclusively like to highlight is that they do not intend to correlate the phenomena of TL and BBR as these two phenomena are entirely different from each other in terms of underlying physics and thus, no dependence of one on the other should be claimed. The TL phenomena have been dealt using the one trap - one recombination center model. In spite of its simplicity, the kinetics of this model appears very useful in the understanding all fundamental features of the luminescence production and provides a framework to interpret many observations.


  Theory Top


Black-body radiation

It is well-known that hot objects glow, and that hotter objects glow brighter than cooler ones. The reason is that the electromagnetic field obeys laws of motion just like a mass on a spring, and can come to thermal equilibrium with hot atoms. When a hot object is in equilibrium with light, the amount of light it absorbs is equal to the amount of light it emits. If the object is black, meaning it absorbs all the light that hits it, and then it emits the maximum amount of thermal light too. It implies that a perfectly black body has reflection and transmission coefficient as zero.

The emission spectrum due to BBR is the curve that gives spectral radiance [Figure 1]. Spectral radiance, R (λ, T) is defined such that R (λ, T) d0λ is power per unit area whose wavelength lies between λ and λ + dλ.

Plank's expression for spectral radiance is



λ is the emitted wavelength, c is the speed of light, k is Boltzmann's constant.

The Planck's expression is used to plot the black body curves for each temperature by working out the power emitted at each wavelength as shown in [Figure 1], [Figure 2].

As the temperature decreases, the peak of the BBR curve moves to lower intensities and longer wavelengths [as evident from [Figure 1]], which is quantified in terms of Wein's displacement law that is, λpTp = 2.898 × 10 − 3 mK which is a constant.

Stefan-Boltzmann law

The total energy radiated per unit surface area of a black body in unit time is directly proportional to the fourth power of the black body's thermodynamic temperature. Mathematically it can be expressed as,



This equation gives thermal energy that is delivered to the sample in time 't' during linear heating profile with the heating rate "β". Clearly, from equation (7) the time and final temperature until which the energy, E (t) delivered to the sample is a function of heating rate.

Now we consider that thermal energy E (t) is responsible for the detrapping of charge carriers that are pumped to the conduction band and subsequently recombine at RC that leaves later in an excited state. The radiative relaxation of RC to the ground state gives luminescence signal. This expression for E (t) (refer equation (7)) is explored further to account for the shift in TL maxima of glow peak with the heating rate.

Case of variable heating rate and shift in thermoluminescence peak

Let us consider the two different heating rates β1 and β2

Then thermal energies imparted to the sample/TL material in time t 1 andt 2 at heating rates β1 and β2 are given by,




  Results and discussion Top


Interpretation of equation (8)

Now to interpret equation (8), let's assume β2 > β1 .

If thermal energy associated with the material by raising its temperature up to T1 with a heating rate β1 , then to impart the same energy at different heating rate β2 the material needs to be heated up to temperature T2 such that



That is, for heating rate β1 if some energy is imparted up to temperature T1, then to deliver the same amount of energy at higher heating rate β2 we need to heat the sample to temperature T2 that is higher than T1 . This is accordance with the observation that TL peak shifts toward high temperature as heating rate increases. Therefore, equation (8) gives qualitative as well as quantitative explanation for a shift in TL glow peak with the heating rate in temperature domain.

Interpretation of equation (9)

Let's analyze and interpret equation (9) which is


"If sample is heated up to temperature T1 with heating rate β1 and T2 with the heating rate β2 such that the thermal energies imparted in two cases are same, then it takes less time if heating rate is high that is, t2 <<i> t1 . This is again in accordance with the shift in TL intensity when plotted w.r.t. time for various heating rates."

Numerical simulations of the derived results

The BBR is correlated with thermal energy imparted (E (t)) to the material that is, energy imparted to the material is assumed to be proportional to the BBR emitted from the sample. Therefore, this energy may be responsible for the detrapping of charge carriers that are pumped to the conduction band. Subsequently, these pumped charge carriers recombine at luminescent centers to give luminescence signal.

[Figure 3] shows shift plot of TL peak w.r.t. heating rate for first order glow curves with parameters S = 10 12 /s, E = 1.0 eV and S = 10 12 /s, E = 1.2 eV. This plot is obtained by graphical solution of equation (3) that is transcendental in nature. The trend as shown in [Figure 3]. Is predicted by Randall and Wilkins for first order glow curve.

If we simulate equation (8) as deduced using concept of BBR and Stefan-Boltzmann law, for shift in TL peak we obtain a curve shown in [Figure 4]. Here, initially we assume that for heating rate 1 K/s, the TL peak occurs at temperature as predicted by equation (3).

From [Figure 3] and [Figure 4] it is evident that the proposed theory based on the approach of BBR satisfactorily explains the nature of the shift in TL peak with the heating rate and shows qualitative trend similar to the one predicted by Randall and Wilkins. However, quantitatively the approach of BBR overestimates this shift and, therefore, needs to be treated more extensively and rigorously. The experimentally obtained TL maxima are also obtained at temperatures higher than what is predicted by TL equations.
Figure 1: Spectral radiance versus wavelength plot of black-body radiation (as predicted by Planck law) (a) in the temperature range 1500-3000 K, (b) in the temperature range 3000-6000 K

Click here to view
Figure 2: Variation of background due to black-body radiation w.r.t time for a linear heating profile at various heating rates

Click here to view
Figure 3: Shift in thermoluminescence (TL) peak for a first order TL glow curve (with parameters as shown in the figure) as predicted by Randall and Wilkins

Click here to view
Figure 4: Shift in thermoluminescence (TL) peak for first order TL glow curves a

Click here to view



  Conclusions Top


Using the concept of BBR it is now intuitive that TL maxima shift toward high temperature with increase in heating rate (equation (8)). Furthermore, as heating rate increases TL peak occurs earlier in the time domain (equation (9)). Approach to perceive and interpret TL phenomenon using BBR, associates a physical significance to shift in Tm with "β" . However, this approach overestimates the shift in TL peak toward high temperature and lower time domain with increase in heating rate. TL measurements performed at isothermal conditions that are frequently used in routine personnel monitoring can also be explained using the suggested approach. The results may be improved by incorporating temperature dependent emissivity corrections of the surface and other aspects of thermodynamics and statistical mechanics.

 
  References Top

1.
Randall JT, Wilkins MH. Proc R Soc A 1945;184:366.  Back to cited text no. 1
    
2.
Chen R, McKeever SW. Theory of Thermoluminescence and Related Phenomena. World Scientific; 1997.  Back to cited text no. 2
    
3.
Kitis G, Spiropulu M, Papadopoulos J, Charalambous S. Nucl Instrum Methods Phys Res 1993;73:367-72.  Back to cited text no. 3
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Theory
Results and disc...
Conclusions
References
Article Figures

 Article Access Statistics
    Viewed1570    
    Printed42    
    Emailed0    
    PDF Downloaded229    
    Comments [Add]    

Recommend this journal