Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 264
ORIGINAL ARTICLE
Year : 2016  |  Volume : 39  |  Issue : 4  |  Page : 204-211

Assessment of natural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh


1 Nuclear Minerals Unit, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
2 Material Science Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, Ramna, Dhaka, Bangladesh
3 Health Physics and Radioactive Waste Management Unit, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
4 Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh

Correspondence Address:
Md. Ibrahim Khalil
Nuclear Minerals Unit, Atomic Energy Research Establishment, Dhaka
Bangladesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0464.199980

Rights and Permissions

Distribution of the natural radionuclides (238 U,232 Th, and 40 K) and their specific activities in sands and sediments of the Brahmaputra (Jamuna) river of Bangladesh together with mineral characteristics has been studied to assess the radiation levels as well as to develop a baseline database for comparison in the future in case of any change in the area under study due to anthropogenic activities. The radiological parameters of natural radioactivity were assessed calculating the radium equivalent activity, hazard index, the absorbed dose rate, and annual effective dose. The average activity concentrations of 226 Ra (238 U),232 Th, and 40 K in sand and sediment were found to be 59 ± 2 & 60 ± 2 Bq/kg, 113 ± 5 & 135 ± 5 Bq/kg, and 983 ± 42 & 1002 ± 43 Bq/kg, respectively. The calculated average absorbed dose rate and annual effective dose were found to be 150 nGy/h and 0.18 mSv/year respectively. These high values are associated with mineral content of the sediment. X-ray diffraction peaks of sand and sediment samples identify quartz, feldspar, rutile, zircon, monazite, uranium fluoride, hematite, kyanite, and uranium arsenide minerals to be present in the samples.


[FULL TEXT] [PDF]*
Print this article     Email this article
Next article
Previous article
Table of Contents
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1644    
    Printed22    
    Emailed0    
    PDF Downloaded280    
    Comments [Add]    
    Cited by others 5    

Recommend this journal